
CN Chapter 3

CT Equilibrium Ensembles

In the previous chapters, we have already advanced the notion of ensembles. The con-

cept was introduced by Gibbs in 1902, to make the connection between macroscopic

thermodynamics and the theory of statistical mechanics he was developing. Classi-

cal Thermodynamics deals with a reduced number of variables at a macroscopic scale,

where the physical system is subjected to very coarse probes. Those macroscopic ob-

servations are insensitive to ��ne details�related to microscopic properties of matter

[1]. Time scales are also very di¤erent. While macroscopic measurements can typically

vary from milliseconds to seconds, characteristic atomic motion may be of the order of

10�15 seconds. Gibbs realized that, since we are unable to control microscopic details,

a large number of microscopic systems are consistent with the �coarse�properties which

we measure at the macroscopic level. The ensemble is then envisioned as an ideal col-
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lection of virtual copies of the system, each of which represents a real state in which the

system may be, compatible with macroscopic constraints. After Gibbs�prescription,

thermodynamic properties are obtained as averages over the representative ensemble.

The ensemble may contain a large number of copies of the system, and ideally, an

in�nite number in the thermodynamic limit. Quantum mechanically, the ensemble is

associated to the density operator, an object which fully incorporates microscopic and

classical uncertainties. In the previous chapters, we have reviewed its general properties

and discussed its time evolution to the equilibrium state. Average values of physical

observables are obtained as traces with the density operator.

In this chapter, we consider stationary ensembles, that is ensembles character-

istic of thermal equilibrium, where @�=@t = 0. For an isolated system, the equilibrium

is attained when all the occupation probabilities of microstates are equal. However,

this situation is not general, since a thermodynamical system is not always isolated.

Di¤erent couplings with the environment will change the accessibility of microstates,

thus leading to di¤erent equilibrium states. We will study here some schemes, which

represent typical cases we often encounter in real systems, but generalizations to other

conditions are possible (some are left as exercises to the reader). We use a set of �ex-

tensive�thermodynamics variables that are commonplace in macroscopic physics, say

(N; V;E), for the number of particles, volume and energy of the system, respectively.

The name �extensive�means that they are proportional to the amount of matter, that
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is they are additive for independent subsystems. From the quantum mechanical point

of view, only the number of particles and the energy are related to dynamical observ-

ables, and this fact makes a di¤erence when de�ning equilibrium ensembles, as we will

discuss later on. The most fundamental stationary ensemble represents an ideally iso-

lated system, where the variables (N; V;E) are all constants. Due to obscure historical

reasons, it is called Microcanonical Ensemble.

A 3.1 Microcanonical Ensemble (NV E)

This is the representative stationary ensemble for a closed system, which does not

exchange energy or particles with the environment, and whose volume is constant.

A more appropriate name is NV E-ensemble, meaning that the three quantities are

constant. Since the energy of a physical system may be quantized, the counting of

states as a function of E can be highly discontinuous. Then, in order to smooth the

counting, we allow microstates in a �small�interval of the energy [E;E + �E], where

�E is much smaller than the average energy, but bigger than the spacing of energy

levels [3]. It can be shown that, in the thermodynamic limit, the contribution of

�E can be neglected. This uncertainty in the energy is introduced for convenience,

and has nothing to do with the microscopic quantum uncertainty related to the time

of observation that we discussed in Section 2.4. Let �(E) be the total number of

microstates contained in [E;E + �E]. In the stationary case, the density operator
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commutes with the Hamiltonian, and both operators can be diagonalized by a common

base of eigenstates. We use the notation fjn >g for this base, with the understanding

H jni = En jni ;

� jni = Pn jni :

In equilibrium, all allowed states have the same occupancy probability, and the density

operator can be written in the form:

� =
1

�(E)

X
E<En<E+�E

jni hnj ; (3.1)

where the number �(E) yields the proper normalization. Equivalently, we write:

Pn =

8>><>>:
1

�(E)
; for E < En < E + �E ;

0 ; otherwise:

(3.2)

The density operator (3.1) is of a mixed form, very similar to (2.11), except that here

we only allow microstates whose energy En satis�es E < En < E + �E. Their number

is �(E) and they are all equiprobable. We know this type of distribution maximizes

the entropy, with the auxiliary condition that � is normalized. This is an equivalent

way to look at the Microcanonical Ensemble: it is the ensemble for which the entropy

� is a maximum, with the proviso that all the allowed states have energy in the interval

[E;E+�E]. Since this is a fundamental fact, we give the demonstration below, in spite

that the mathematics is the same than the one we have employed in section 2.3. Write

the density operator in the form:

� =
X

E<En<E+�E

Pn jni hnj ;
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with the condition

Tr � =
X

E<En<E+�E

Pn = 1 : (3.3)

Then, the von Neumann entropy is given by:

� = �
X

E<En<E+�E

Pn lnPn ;

and we calculate the variation of � subjected to the condition (3.3). The latter intro-

duces a Lagrange multiplier �. We maximize the functional:

�

 
� + �

X
E<En<E+�E

Pn

!
= �

X
E<En<E+�E

�Pn(lnPn + 1� �) = 0 ;

where variations �Pn are considered as independent. We obtain:

lnPn = �� 1 = constant = lnP

The constant is calculated with the normalization:

Tr � =1 =
X

E<En<E+�E

Pn = P
X

E<En<E+�E

= P �(E) ;

leading to P = 1=�(E), which is exactly our de�nition of the density operator for the

Microcanonical Ensemble. We now calculate the equilibrium entropy for this ensemble:

� = � 1

�(E)

X
E<En<E+�E

ln

�
1

�(E)

�
= ln�(E) ;

which is the celebrated Boltzmann�s relation for the entropy 1. The quantity � is a

number, and association with the thermodynamical entropy requires a physical constant
1Except for the Boltzmann constant, this equation is carved on Boltzmann�s gravestone, in the

Central Cemetery of Vienna.
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with the dimension of entropy. This is the famous Boltzmann�s constant kB, whose

origin will be discussed later in this chapter. For a macroscopic system, the energy

spectrum can usually be considered quasi-continuous, with a smooth density of states

D(E). In addition of �(E), we introduce an auxiliary quantity �(E), de�ned as the

number of microstates with energy En < E. We directly verify the relation �(E) =

�(E + �E)� �(E). Since �E << jEj, we obtain:

�(E) =
�(E + �E)� �(E)

�E
�E � @�(E)

@E
�E = D(E)�E ;

with D(E) = @�=@E being the density of states. For most systems in the thermody-

namic limit, the rate at which the number of microstates increases with energy is so

impressive, that for all practical purposes, the entropy can equivalently be expressed

in terms of any of the quantities �(E), �(E) or D(E). Di¤erences are of the order of

lnN or smaller, and can be neglected in relation to N , when N !1 (thermodynamic

limit). In terms of the density of states, we have the relations:

�(E) =
R
"<E

d" D(") ;

�(E) =
R
"<E+�E

d" D(")�
R
"<E

d" D(") � D(E)�E ;

which point at the density of states as being the fundamental quantity. The density of

states D(E) is often called the partition function of the Microcanonical Ensemble.
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B 3.1.1 Connection with Thermodynamics

At equilibrium, we identify the thermodynamic entropy S with the von Neumann en-

tropy through

S = kB� = �kBTr (� ln�) ; (3.4)

where the link is done with the Boltzmann constant. For the Microcanonical Ensemble,

we readily obtain the Boltzmann relation

S = kB ln �(E) : (3.5)

Note that S is a function of N; V and E, that is

S = S(N; V;E) ;

which is implicitly contained in relation (3.5). This relation also shows the role of the

Boltzmann constant, which is to establish a connection between a macroscopic quantity

on left side, with a quantity of microscopic origin on the right. The thermodynamics

is developed using the entropic representation, where the entropy is used as the ther-

modynamic potential [1]. Fundamental properties of the entropy are ful�lled in this

theoretical scheme. By construction, we know that the Second Law of Thermodynamics

is satis�ed, since the ensemble is obtained by maximizing the entropy. Also, proper-

ties of the density operator � warrant the extensive character of S, i.e. the entropy

is additive for two systems which do not interact, as shown in subsection 2.3.1. From

the statistical mechanics point of view, the thermodynamics is reduced to counting
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microstates to get the quantity �(E). This procedure is extremely simple in principle,

but calculation of �(E) may be very involved in many cases, as we shall see in some

examples. Now, we have to interpret rules to calculate changes produced in thermo-

dynamic processes. The Microcanonical Ensemble represents an isolated system, with

�xed number of particles, volume and energy. But to generate a thermodynamical

process we need to operate over the system removing some of the constraints. For

instance, we remove a wall to change the volume, or an adiabatic wall is transformed in

diathermal, to allow transfer of heat. In equilibrium thermodynamics, transformations

are performed very slowly, we say in a quasi-static way, following a sequence of equi-

librium states (small non-equilibrium transients between di¤erent equilibrium states

are not considered, not even represented in the space of thermodynamical parameters)

[1]. We assume that the system is microcanonically distributed at all moments, and

variations of thermodynamical quantities can be computed using the microcanonical

ensemble. For an in�nitesimal quasi-static transformation, we have:

dS (N; V;E) =
@S

@E
dE +

@S

@V
dV +

@S

@N
dN : (3.6)

A fundamental postulate of thermodynamics considers the entropy as a �function of

state�or as a thermodynamical potential, meaning that dS in (3.6) is a �perfect di¤er-

ential�, i.e. variation of S in the parameter space, does not depend on the trajectory.
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A su¢ cient and necessary condition is given by:

@2S

@V @E
=

@2S

@E@V
;
@2S

@N@E
=

@2S

@E@N
;
@2S

@N@V
=

@2S

@V @N
; (3.7)

which are called Maxwell relations. We will elaborate more on this later on. Note that

the partial derivatives
�
@S

@E
;
@S

@V
;
@S

@N

�
are �intensive parameters�, meaning that they

are not additive. They represent the counterpart of the extensive parameters de�ned

earlier. Important de�nitions are in order:

De�nition 16 Temperature T;

1

T
�
�
@S

@E

�
V;N

; (3.8)

where we are employing the usual thermodynamic notation for the partial derivatives.

When we increase de energy, we increase the availability of states, and the

entropy also increases. That means that T > 0. However, there are anomalous systems,

usually containing frozen degrees of freedom, whose entropy is not a monotonically

increasing function of the energy. This case will be discussed in a topic on Negative

Temperature.

De�nition 17 Pressure P;

P � T

�
@S

@V

�
E;N

: (3.9)

This parameter is in general positive, since an increase of the volume of the

system also implies an increase of availability of states.
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De�nition 18 Chemical potential �;

� � �T
�
@S

@N

�
E;V

: (3.10)

We will give a physical interpretation of the chemical potential afterwards. In

terms of the parameters so de�ned, we may write the variation of the entropy as:

dS (N; V;E) =
1

T
dE +

P

T
dV � �

T
dN ; (3.11)

which can be solved for the variation of the energy in the form:

dE = TdS � PdV + �dN : (3.12)

If the number of particles is constant, we get:

dE = TdS � PdV ; (3.13)

which was called the First Law by the founder fathers of Thermodynamics. It recognizes

�heat�as a form of energy, with the heat absorbed by the system given by �Q = TdS,

where the symbol �Q means that Q is not a function of state. The other term, �W =

�PdV , represents the �work done on the system�, and is not a perfect di¤erential

either. However, the total energy E is a function of state, with

dE = �Q+ �W ;

and is identi�ed with the thermodynamics internal energy U . The relation

S = S(N; V;E)
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is solved for U in the form

U = E(S; V;N) ;

with

T =

�
@U

@S

�
V;N

; P = �
�
@U

@V

�
S;N

; � =

�
@U

@N

�
S;V

: (3.14)

We interpret �dN as the change in internal energy when we vary the number of particles,

at constant S and V . The thermodynamic representation with the internal energy U

is equivalent to the entropic one, and the First Law simply states that the total energy

is conserved (U is a function of state, or equivalently, is a potential). Relations (3.14)

can be considered as alternative de�nitions of the intensive parameters. In the next

subsection, we summarize the above results in a form of a prescription.

B 3.1.2 Recipe (Microcanonical Ensemble)

Let our physical system be in equilibrium with volume V , number of particles N and

energy E, with �E being the uncertainty in the energy. The Hamiltonian H of the

system is known, and in principle, we assume that we can get the full spectrum. To

get the thermodynamical properties, we follow the recipe below [4]:

a) from the spectrum, we get the density of statesD("), and the associated quantities

�(") and �("), for E � " � E + �E. Any of the above quantities can be used

to get the entropy in the thermodynamic limit, and we choose the one which is

more convenient;
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b) we obtain the thermodynamic entropy through one of the expressions:

S =

8>>>>>><>>>>>>:
kB ln�(") ;

kB ln �(") ;

kB lnD(") ;

where kB is the Boltzmann constant. The origin of kB will be settled when

discussing the absolute temperature scale and the equation of states of an ideal

gas;

c) the internal energy U = E(S; V;N) is obtained solving for E in the equation

S = S(N; V;E). The equations of states (3.14) are obtained by deriving the

potential U ;

d) other thermodynamical potentials are obtained straightforwardly from the inter-

nal energy U . �

EXP Example 1

Ideal Gas model

The ideal gas is a theoretical model which asymptotically

accounts for the properties of real gases at the diluted limit, where

particle-particle interactions are neglected. The model is then com-

posed of free particles that collide elastically, but with a very large
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mean free path. Those properties are believed to be universal at suf-

�ciently high temperatures and low densities. To study the model,

we consider free particles enclosed in a cubic box of volume V = L3.

We �rst analyze the single particle case. We assume periodic bound-

ary conditions for the wave function, which is written as a plane wave

with well de�ned momentum �!p :

 p(x) =
1p
V
exp

�
i

~
�!p � �!x

�
: (3.15)

In (3.15),  is normalized to the volume of the sample. Since the

system is of �nite size, the momentum is quantized, and periodic

boundary conditions yield

pj = ~
�
2�

L

�
�j ;

where �j is a number, �j = 0;�1;�2; :::;�1. Boundary conditions

are not essential when we study bulk properties in the thermody-

namic limit, and periodic boundary conditions are very convenient

for counting states, as we will see in a minute. The characteristic

volume of a single state in �!p -space (apart from extra degeneracies)

is then given by :

! = ~3
�
2�

L

�3
=
h3

V
:
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We calculate the partition function �(E) for a single particle, which

we call �1(E):

�1(E) =
X
�!p

0g ;

where the sign
P

�!p
0 means that we count all the states with energy

" = �!p 2=2m < E, and the g factor takes into account degeneracies

coming from other degrees of freedom (spin, for example). Now, note

that for a large system, as it is the case in the thermodynamic limit,

the spectrum is a quasi-continuum. In this case, the counting of

states is approximated by an integration over the proper domain in

�!p -space, i.e. the number of states is proportional to the correspond-

ing �!p -volume. The constant of proportionality is !�1 = V =h3,

which is the inverse of the volume of a single state:

X
�!p

0 !
�
L

h

�3 Z
"<E

d3p :

Incidentally, since L3 = V =
R
V
d3x , the partition function can be

written in a very suggestive form:

X
�!p

0 !
�
1

h

�3 Z
"<E

d3p

Z
V

d3x ; (3.16)

which is the classical prescription given by Gibbs to calculate the

partition function as an integral over the phase space [5]. Gibbs also

realized that one should divide by a constant to make the integration
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adimensional (a constant with dimension of an action). With the

advent of Quantum Mechanics, we know that the constant is h,

the Planck constant, which is the minimum volume available for a

state in the xp-phase space (Uncertainty Principle). Note that the

counting given by (3.16) is three dimensional. The above formula

can be straightforwardly generalized to arbitrary dimension n:

X
0 !

Z
:::

Z
dnp dnx

hn
:

Let us now calculate explicitly the partition function for a single

particle. Given the dispersion relation of a free particle, the relation

1

2m
(p2x + p2y + p2z) = E ;

where m is the mass of the particle, represents the surface of a 3-dim

sphere in �!p -space. Integrating for all energies " < E, means to get

the volume of a sphere of radius
p
2mE:

Z
"<E

d3p =
4�

3
(2mE)3=2 ;

yielding

�1(E) =
4�V

3h3
g (2mE)3=2 ; (3.17)

meaning that the number of available states increases with the en-

ergy in proportion to E3=2. It is interesting to get the density of
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states for a single particle from (3.17):

D1(E) =
@�(E)

@E
= g

2�V

h3
(2m)3=2E1=2 : (3.18)

We now do the counting for the N�particle system. The Hamil-

tonian is

H =
NX
i=1

�!p 2
i

2m
;

with all particles having the same mass (identical particles). We

renumber the momenta components (in 3� dim) :

(px1 ; p
y
1; p

z
1; :::; p

x
N ; p

y
N ; p

z
N) = (P1; P2; :::; P� ; :::; P3N) ;

meaning that we are working in a 3N � dim space, with the energy

of free particles given by:

" =
3NX
�=1

P 2�
2m

:

Calculation of the partition function is readily done:

�N(E) =

�
L

h

�3N
gN
Z
"<E

d3NP =

�
1

h

�3N
gN
Z
d3Nx

Z
"<E

d3NP =

=

�
1

h

�3N
gN L3N
3N ;

where 
3N is the volume of a sphere of radius (2mE)
1=2 in the 3N �

dim momentum space. One �nds


3N =
�3N=2

�
�
3N
2
+ 1
� (2mE)3N=2 ;
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where �(x) is the Euler Gamma function, and �nally we get:

�N(E) =
1

�
�
3N
2
+ 1
� "gL3�2�mE

h2

�3=2#N
: (3.19)

With the partition function, we calculate the entropy using the

Boltzmann relation

S = kB ln�N(E) :

When taking the thermodynamic limit, which we represent as N !

1, we use the Stirling approximation for the factorial:

ln �

�
3N

2
+ 1

�
� ln �

�
3N

2

�
� 3N

2
ln

�
3N

2

�
� 3N

2
=

= N ln

�
3N

2

�3=2
� 3N

2
:

Collecting all the terms, we get:

S =
3N

2
kB +NkB ln

"
gV

�
4�mE

3h2N

�3=2#
: (3.20)

The above formula can be solved for the energy:

U(S; V;N) = E =

�
3h2

4�m

�
N

(gV )2=3
exp

�
2S

3NkB
� 1
�
;

from where we calculate the intensive parameters. We �rst get the

temperature:

T =

�
@U

@S

�
V;N

=
2U

3NkB
;
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with the equation of state

U =
3

2
NkBT :

For the pressure:

P = �
�
@U

@V

�
S;N

=
2

3V
U =

NkBT

V
;

yielding the well known equation of state for the ideal gas

PV = NkBT :

As an illustrative example, let us calculate the entropy using the

quantity �N(E) = �E

�
@�N(E)

@E

�
. We obtain

�N(E) =
3N �E

2E
�N(E) ;

and the �new entropy� ~S = ln�N(E), in the thermodynamic limit, is

given by:

~S =
3N

2
kB +NkB ln

"
gV

�
4�mE

3h2N

�3=2#
+ kB ln

�
3N �E

2E

�
;

and clearly the last term can be neglected when N ! 1, resulting

~S = S. Thus we arrive to the conclusion that the width of the

allowed range of the energy does not make much di¤erence, whether

it is a small �E or the whole range [0; E]. We realize that this fact

is due to the fast rate of increasing of the allowed number of states

with the energy [see Eq. (3.19)]. �
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B 3.1.3 Absolute temperature

The ideal gas model is also important for historical reasons. The concept of the ab-

solute temperature scale and the origin of the Boltzmann constant derive from it. We

give below a brief historical account that goes back to the XVII century. Phenomeno-

logically, it was found that all gases comply with Boyle law (1662) at low pressures. It

states that

PV

N
= const:

at constant temperature. The value of the constant depends on the temperature scale

chosen. Charles (1780) showed that the above ratio is nearly a straight line as a function

of temperature, for a wide range of variation. If we use the Celsius or centigrade scale

�, this straight line can be �tted to the relation

PV = NA (� + �0) ; (3.21)

where A and �0 are constants. The pressure and the internal energy of the ideal gas

go asymptotically to zero for �! ��0, and this fact led lord Kelvin (1848) to identify

this value with the absolute zero temperature, when the motion of molecules has ceased

completely. In the Celsius scale, we obtained �0 = 273:16. Kelvin then de�ned the

absolute scale, or Kelvin scale T by

T � �+�0 ;
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and we use letter K for the unit of the scale. In relation (3.21), N stands for the

number of molecules, and then A is identical with the Boltzmann constant kB (Planck,

1900), with value

kB = 8:617332� 10�5 eV �K�1 :

Then, the Boltzmann constant relates absolute temperature with energy. Since N =

�NA, where � is the number of moles and NA is the Avogadro number, another way to

write the equation of states of an ideal gas is

PV

�
= NAkB T = RT ;

and the quantity R � NAkB is known as the ideal gas constant. For more details, we

refer the reader to the excellent text by Philip Morse [6]. �

The above calculation for the free particle already shows that employing the

Microcanonical Ensemble may be cumbersome due to the counting of states. Except

for a number of few cases, there is little hope that the recipe can be straightforwardly

applied to more complex systems. Gibbs already acknowledged the problem, which he

circumvented with the introduction of the Canonical Ensemble. But before proceeding

in that direction, let us solve another example following the recipe of the Microcanonical

Ensemble, just to display the general trends in this type of computation.
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EXP Example 2

System of N harmonic oscillators in 1� dim

As in the previous example, we do not consider interac-

tions. The oscillators are trapped in a parabolic potential of in�nite

height, and the statistical mechanics makes no reference to the vol-

ume of the sample (that makes a di¤erence with the free particle

case). The Hamiltonian of the system is

H =
NX
i=1

�
p2i
2m

+
1

2
m!2x2i

�
;

and all the oscillators have the same mass and natural frequency

(they are �identical�, more on this later). The spectrum is well

known from Quantum Mechanics textbooks, and reads

EN(�1;�2; :::; �N) =
N

2
~! + ~! (�1 + �2 + :::+ �N) ; (3.22)

where �i = 0; 1; 2; :::;1 is the quantum number of the i�th oscilla-

tor. However, from (3.22) one notes that the energy of a particular

state does not depend on the individual quantum numbers �i, but

only on the sum of them

m = �1 + �2 + :::+ �N ; (m = 0; 1; 2; :::;1) (3.23)
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in the form

EN(�1;�2; :::; �N) = EN(m) =
N

2
~! +m~! ; (3.24)

so we are left with only one quantum number and a big degeneracy

WN(m). To calculate the latter, we have to exercise combinator-

ial analysis in counting the number of ways an integer m can be

decomposed as a sum of N nonnegative integers, as shown in re-

lation (3.23). They are called restricted ordered decompositions or

restricted ordered partitions of the integer m, because the order of

the integers is relevant and all the sequences are counted. This fact

means that we distinguish individual oscillators. From the theory of

numbers [7], we get the result

WN(m) =
(N +m� 1)!
m! (N � 1)! ; (3.25)

and those numbers come from the expansion of the generating func-

tion

1

(1� x)N
=

1X
m=0

WN(m) x
m :

An elementary proof of this result will be given afterwards, with

the introduction of the Canonical Ensemble, and when establishing

inter-relations between ensembles. The numbers given in (3.25) are

usually calculated through rather arti�cial procedures, which are
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typical of combinatorial analysis [8]. The spectrum given by (3.24)

is discrete, and the density of states can readily be obtained as a

series of delta functions:

DN(E) =
1X
m=0

WN(m) � (E � EN(m)) ; (3.26)

where each peak is weighted by its degeneracy. Assume that the en-

ergy of the system is around of one of the levels, say E � EN(M), for

a given M . We calculate the entropy associated with its degeneracy

WN(M). Firstly, note that

M =
E

~!
� N

2
:

In the thermodynamic limit, we assume that N;M � 1, and we use

the Stirling approximation for the factorial

lnWN(M) � (N +M) ln (N +M)� (N +M)�M lnM +M �

�N lnN +N :

Now, we introduce a natural adimensional variable

" � 2E

N~!
;

which is the total energy measured in relation to the energy of the
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ground state, with 1 � " < +1. One gets:

S = kB lnWN(M) = (3.27)

=
N

2
kB" ln

�
"+ 1

"� 1

�
+
N

2
kB ln [("+ 1) ("� 1)]�NkB ln 2 :

We use the entropic representation to get the temperature:

1

T
=

�
@S

@E

�
N

=
kB
~!
ln

�
"+ 1

"� 1

�
: (3.28)

We de�ne for convenience

� � 1

kBT
;

with dimension inverse of energy. Relation (3.28) is written now as

�~! = ln
�
"+ 1

"� 1

�
;

and this equation can be inverted for the energy in the form

" = coth

�
�~!
2

�
:

Going back to the extensive variable E, we can write a more sugges-

tive relation

E = N

�
~!
2
+

~!
exp �~! � 1

�
: (3.29)

When T ! 0, � ! +1, and the energy goes to its ground state

value, E ! N
~!
2
. The classical limit is obtained for �~! � 0,
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which means that the thermal energy is much bigger than the spacing

of the quantum levels. From (3.29), one readily obtains

E ! Eclass = NkBT ;

which is recognized as the classical result. Now, we show that the

inclusion of additional levels in the counting does not modify the

above results in the thermodynamic limit (N !1). In fact, we

have the relation

WN(M � 1)
WN(M)

=
M

N +M � 1 ;

and for M �nite, the above ratio vanishes when N ! 1. If we

integrate over a �nite range of the energy

�(E) =

Z E+�E

E

d" DN(") =
MX
M0

WN(m) ;

the sum is dominated by the last term with the biggest m, in the

thermodynamic limit. �

There is a disturbing detail, when we compare the expressions (3.20) and

(3.27) for the entropy. We discover that the entropy of the ideal gas is not extensive, in

contrast to the result for the system of harmonic oscillators. We �nd that the problem

comes from a term of the form NkB lnV in the model of free particles (remember that
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the volume is absent for the system of oscillators). Gibbs attributed the result to a

wrong counting that did not take into account the identity of particles, i.e., there is

an overcounting corresponding to con�gurations that we cannot distinguish. Gibbs

suggested to correct the counting dividing by a factor N !, the number of permutations

of N identical particles. This correction is known in the literature as the �Gibbs factor�.

If we use the Stirling approximation lnN ! � N lnN � N , for large N , and combining

with the term containing the volume, one obtains:

NkB ln

�
V

N

�
;

which is an extensive quantity. The entropy of the ideal gas now become

S =
5N

2
kB +NkB ln

"
gV

N

�
4�mE

3h2N

�3=2#
; (3.30)

which is extensive. And why the counting is already correct for the system of oscillators?

The Gibbs factor is assumed to correct translational degrees of freedom, and oscillators

are localized objects (this is why the volume of the sample is absent in the solution).

Translational degrees of freedom will appear when dealing with a �gas of oscillators�,

as it is the case of a photon gas. In any case, we will show that the Gibbs factor is an

approximation valid near the classical regime. The de�nite answer to this problem is

obtained with the introduction of quantum statistics, when the proper symmetrization

of many body quantum states is included in the theory. More on this later. With the

above examples, we close this section.
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